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Abstract
1D models of magnetic multilayers, with alternating hard and soft layers, are extended to 2D
and 3D, and presented within a common framework of nearest neighbour interactions. Using
2D calculations, it is shown that the properties of magnetic exchange springs can be changed
significantly by patterning the hard pinning layers. But, in certain cases the bending field BB is
not significantly altered, even when half the pinning layer is removed. 3D calculations are used
to probe the effects of defects on the properties of magnetic exchange springs, using epitaxial
DyFe2/YFe2 superlattices as an example. It is shown that point defects such as Fe vacancies
have little effect on the bending field transition. This is in marked contrast to the 1D model,
where an Fe vacancy cuts the magnetic exchange spring into two. Finally, it is demonstrated
that significant changes in the properties of magnetic exchange springs can be engineered, by
placing rare-earth ions in the centre of the soft YFe2 springs. A new phenomenon, exchange
spring collapse, is predicted.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In recent years, the properties of magnetic exchange springs
have attracted much attention. For example, Fullerton et al
(1998, 1999), Jiang et al (2004) have studied the bi-layer
system SmCo5/Fe. Here, the hard SmCo5 layer pins one
side of the magnetically soft Fe layer. On the other hand,
Sawicki et al (2000), Dumesnil et al (2000), Zimmermann et al
(2006), Fitzsimmons et al (2006) have worked on epitaxially
grown REFe2/YFe2 superlattices. Here it is the YFe2 which
forms the soft layer. One of the early reasons for this work
stemmed from the papers of Kneller (1991), Coey and Skomski
(1993), who argued, on theoretical grounds, that composite
magnets with a giant energy product (BH)MAX of 120 MGOe
might be feasible. However recently, other features such
as exchange spring assisted data storage schemes have been
proposed (Ulrich et al 2004). In addition, the discovery of giant
magneto-resistance, driven by exchange springs (Gordeev et al
2001), opens up potential applications in device sensors.

From the theoretical point of view, a key paper, detailing
the magnetic behaviour of a hard magnetic substrate coated
with a soft Fe layer, was first given by Goto et al (1965).

1 Author to whom any correspondence should be addressed.

These authors showed that the angular dependence of a planar
exchange spring in a bi-layer sample, could be expressed
in terms of Jacobi elliptic functions. They showed, both
theoretically and experimentally, that the onset of the exchange
spring was characterized by a critical bending field BB which
was proportional to 1/d2, where d is the thickness of the soft
magnetic layer. This work has been extended by Bowden
et al (2000) to discrete bi-layer and multilayer exchange
springs. In particular, it was shown that the bending field
transition BB is related to the Fe–Fe exchange field BEX by
the simple relationship BB = BEX(π/N )2 (multilayer) and
BB = BEX(π/2N )2 (bi-layer), where the soft layers are pinned
at the hard interfaces and N is the number of monolayers in
the magnetically soft layer,. Finally, it should be noted in
addition to the first order requirement ∂ Etot/∂θi = 0 for all
{θi}, it is also necessary to ensure that the N × N second order
matrix E′′

0 = {∂2 Etot/∂θi∂θ j} (for planar spins) is positive
semi-definite. For example, if E′′

0 possesses one negative root,
the spin-arrangement {θi} is unstable (Bowden et al 2003).

In this paper, the 1D work of Goto et al, and other authors
is extended to two and three dimensions. The paper is set
out as follows. In sections 2 and 3, a common framework
for 1D, 2D and 3D models is adopted, based on a nearest
neighbour interaction model. It is shown that for simple planar
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Figure 1. A small section of a planar exchange spring directed along
the z-axis. The centre ion is surrounded by four parallel interacting
neighbours in the x–y plane, while the moments above and below the
centre ion are twisted with respect to each other.

springs, all models predict the same bending field BB. In
section 4, 2D calculations are presented which demonstrate
that the properties of domain walls can be significantly altered
by modifying the hard pinning layers. Finally, in sections 5
and 6, 3D results are presented which probe the effects of
defects on the properties of magnetic exchange springs in the
DyFe2/YFe2 system. It is shown that singular point defects
such as Fe vacancies have little effect on the bending field
transition, in marked contrast to the 1D model, where a single
Fe vacancy simply cuts a magnetic exchange spring into two.
However when RE ions are placed in the middle of the soft
YFe2 springs, significant changes can be brought about.

2. 1D, 2D and 3D models of a magnetic exchange
spring

In this section, we cast the 1D, 2D and 3D models of a
magnetic exchange spring into a common framework. For
simplicity, we assume that the exchange spring is a simple
planar type with the screw-axis directed along the z-direction
i.e. perpendicular to the plane of the multilayer. It will be
shown that the bending fields and energies are all the same,
regardless of dimension.

For convenience, we start with the 3D model shown
schematically in figure 1. Here, we show a small portion of
a magnetic exchange springing in elemental iron. Note that the
Fe moments are assumed to sit on a cubic lattice, with nearest
neighbour interactions only. Moreover, the moments, in any
given monolayer perpendicular to the z-axis, are all aligned
parallel to each other.

The energy of such a spring can be written in the form:

Etot =
N∑

i

N∑

j

N∑

k

εi, j,k (1)

where εi, j,k , the energy of the centre-ion, is given by:

εi, j,k = − 1
6μFE BEX

[
cos(θi, j,k+1 − θi, j,k)

+ cos(θi, j,k − θi, j,k−1)
] − 2

3μFE BEX

− K A(i) cos2 θi, j,k − μ(i)BAPP cos
(
θi, j,k − θH

)
. (2)

Here, (i) BEX and BAPP are the magnetic exchange and applied
fields, respectively, (ii) the magnetic field is applied in the
plane along θH , and (iii) KA is a simple axial in-plane
anisotropy, which is usually set equal to zero in the soft layers.
Note the appearance of the − 2

3μFE BEX term in equation (2).
This represents the exchange energy arising from the four
parallel and co-planar spins in the x–y plane.

Next we observe that the 1D model can be expressed in
almost identical form:

Etot =
N∑

k=1

εk (3)

where

εk = − 1
6μFE BEX

[
cos(θk+1 − θk) + cos(θk − θk−1)

]

− 2
3μFE BEX − KA(i) cos2 θk − μ(i)

× BAPP cos (θk − θH ) . (4)

Note that this expression differs from that of Goto et al
(1965), Fullerton et al (1998, 1999), Fitzsimmons et al (2006)
and others, in two respects. Firstly, Goto et al assume that the
exchange energy is generated by neighbouring k ± 1 layers,
on the kth ion. Secondly, there is an extra exchange term
− 2

3μFE BEX in equation (4), arising from the four in-plane
parallel ‘ghost-spins’. Note that if all the spins are parallel,
the full single-ion exchange term −μFE BEX is recovered.

With this proviso it is easy to see that the energy per ion,
in both the ferromagnetic and planar–spiral states, in both the
1D and 3D models under consideration, are identical. Thus
the bending fields, magnetic loops etc, are the same. A similar
argument can also be mounted for the 2D model, again for the
case of a simple planar spiral. However in this case, the amount
of energy contributed by two ghost spins is − 1

3μFE BEX. In
practice, this common framework confers great advantages.
For example, it is often possible to check say a 3D result with
a faster 1D calculation.

However, the existence of more complicated spiral states,
involving angular dispersion in more than two dimensions, is
possible. In such cases, the use of a 1D model is inappropriate.
In such cases, it is mandatory to use either the general 2D or
3D model. For 2D:

εi, j = N
{−μFE BEX

1
6

[
cos(θi+1, j − θi, j ) + cos(θi, j − θi−1, j )

+ cos(θi, j+1 − θi, j ) + cos(θi, j − θi, j−1)
]

− 1
3μFE BEX − K A(i) cos2 θi, j

− μ(i)BAPP cos
(
θi, j − θH

)}
(5)

while in 3D:

εi, j,k = −μFE BEX
1
6 [cos(θi+1, j,k − θi, j,k)

+ cos(θi, j,k − θi−1, j,k) + cos(θi, j+1,k − θi, j,k)

+ cos(θi, j,k − θi, j−1,k) + cos(θi, j,k+1 − θi, j,k)

+ cos(θi, j,k − θi, j,k−1)] − K A(i) cos2 θi, j,k

− μ(i)BAPP cos
(
θi, j,k − θH

)
. (6)

2
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Of course, in general, it is best to use the full 3D model
with generalized angles {θi, j,k, φi, j,k}. Such a model will
converge ultimately to an appropriate exchange spring state,
planar or otherwise. However there are many cases where to
reduce computing time, the use of lower dimensional models
is mandatory. In this regard, it is also worth noting that the
time required to find the shape of the exchange spring in a
repetitive multilayer film can be reduced significantly, using
cyclic boundary conditions. For example, in the 1D model we
set:

θ0 = θN ; θN+1 = θ1 (7)

where N is the number of monolayers in each bi-layer.
Finally, for stability, the partial derivative of the total

energy, with respect to small variations in θi , must be zero.
In the 1D model therefore:
∂ Etot

∂θk
= N2{−μFe BEX {sin (θk+1 − θk) − sin (θk − θk−1)}

+ K A (k) sin 2θk + μ (k) BAPP sin (θk − θH )} = 0.

(8)

In practice, this equation is sufficient to define the shape
of the magnetic exchange spring. This is usually done using
numerical methods and there is extensive literature on this
problem. The reader is referred to (i) the iterative procedure of
Trallori et al (1994, 1996), and Amato et al (1999, 2000), (ii)
the Monte Carlo method of Fullerton et al (1998, 1999), and
(iii) the linearized procedure of Bowden et al (2000, 2003). In
this paper, we use the latter because this method readily lends
itself to a discussion of stability. But, while equation (8) can
be used to define the shape of an exchange spring, it cannot be
used to decide whether the solution represents a minimum or
maximum in the energy Etot. This point can be settled by an
examination of the eigenvalues of the double energy derivative
N × N matrix E′′

0, where N is the number of independent
variables. If the lowest energy eigenvalue is positive semi-
definite, for a given set of angles {θi}, the solution represents a
minimum in the energy surface Etot. In addition, it is also worth
noting that more information can be gained by examining the
eigenvectors of the lowest eigenvalues of E′′

0. For example,
as the magnetic field approaches the bending field transition
BB, the eigenstate just above the AF ground state reveals the
incipient presence of a magnetic exchange spring.

3. Estimates of the Fe–Fe exchange field BEX

In this section, we review the estimates of the Fe–Fe exchange
field BEX used by several authors in their discussion of
magnetic exchange spring systems. In addition, we define a
simple cubic 3D model which is used to represent the anti-
ferromagnetic cubic Laves REFe2 compounds.

Following Fullerton et al (1998, 1999) the exchange field
at the kth site in a 1D model takes the form:

εk(EX) = − A

d2

[
cos (θk+1 − θk) + cos (θk − θk−1)

]
. (9)

Thus:

μFe BEX = 2A

d2
. (10)

For soft iron layers Fullerton et al (1998) give A ≈ 2.8 ×
10−6 ergs cm−1 and d = 2 Å. On using nFe = 8.47 × 1022 Fe
atoms cm−3, we find μFe BEX = 1191 K per iron moment.
This is in accord with general expectations, since the Curie
temperature for Fe is 1070 K, and we expect μFe BEX ∼ TC. We
turn now to a discussion of the REFe2 Laves phase compounds.

First, we note that the magnetic hysteresis curves of
several DyFe2/YFe2 superlattices have already been well
modelled at low temperatures (10 K) using a simple planar
1D spring model with the parameters KA(Dy) ∼ 10 K ([001]
easy axis), KA(Y) = 0, BEX = 600 T, MYFe2 = 3.0 μB,
MDyFe2 = 7.0 μB (i.e. μFe = 1.5 μB and μDy = 10 μB) and
setting one monolayer of the DyFe2 equal to 2.5Å (Bowden
et al 2003). For the purposes of comparison therefore, these are
the values used in this paper, except for the revised estimates of
Fe–Fe exchange field BEX and monolayer spacing d discussed
below. In passing, we note that there is a small magnetic
moment ≈ − 0.4 μB on the Y sites (Armitage et al 1989).
For present purposes however, we chose to ignore the small Y
moment, given the errors in estimates of rather more important
parameters.

Fitzsimmons et al (2006) have given estimates of A
for Fe–Fe exchange field in YFe2 and DyFe2. These were
derived from neutron-reflectrometry data, fitted to a 1D planar
exchange spring model. Using their quoted figures we find
μFe BEX = 24 803(3011) K for YFe2(DyFe2), respectively.
Since the Curie temperatures of these two compounds are
∼600 K, we must conclude that these estimates are too high.
Moreover, given that the Curie temperature of these two
compounds are similar (542 K for YFe2 and 635 K for DyFe2,
Buschow 1977), it would appear that there is little reason for
the difference (∼8) in the quoted Fe–Fe exchange fields for
these two compounds. In general, we expect μFE BEX ≈ 600 K
for the REFe2 compounds, but we would like to do better.

In practice, the exchange field we adopt depends on
the spacing d between the Fe–Fe layers. For the REFe2

compounds, the choice of d is non-trivial. The spacing
between the Fe–Fe layers, and their relative populations, are
direction dependent. For a magnetic exchange springs, in
different directions, this poses a problem. We choose instead to
set up the simple cubic representation of the cubic Laves DyFe2

compound shown in figure 2. Here the volume associated with
each DyFe2 formula unit has been set at (a/2)3, where the
cubic lattice constant a = 7.325 Å for DyFe2 (Buschow 1977).
Note that from the micro-magnetic modelling point of view,
the magnetization m = (μDy − 2μFe) per unit cell (a/2)3

is faithfully reproduced. Thus we set d = 3.66 Å. Finally,
for simplicity we have assumed that the anti-ferromagnetic
exchange between the RE and Fe moments is infinite. This
is not strictly true, but if we allow non-co-linearity this will
double the number of variables {θi, φi }Fe → {θi , φi }Fe +
{θi , φi}RE.

Having made a choice for the spacing d , we now need to
obtain an estimate for the exchange field. As mentioned earlier,
Bowden et al (2000) have given a very simple formula for
infinitely pinned exchange springs (see section 1). However, in
the 3D model, and revised 1D model, only 1/3 of the exchange

3
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Figure 2. Simple cubic representation of the Laves REFe2

compound. At each site the magnetic moment m = (μDy − 2μFe).
The spacing between the sites is a/2.

field is involved in the creation of a planar exchange spring. We
write therefore:

BB = 1

3
BEX

( π

N

)2
(multilayer)

BB = 1

3
BEX

( π

2N

)2
(bilayer).

(11)

Note the intimate connection between the exchange field
BEX and N the number of monolayers, which in turn involves
the monolayer spacing d .

Given equation (11) we can now obtain an estimate for
BEX, using the experimentally determined bending fields BB

for various DyFe2/YFe2 multilayers (Sawicki et al 2000). On
fitting their data to the formula:BB = k/tm (multilayer), where
t is the thickness of YFe2 layers, the aforementioned authors
found m = 1.83(12) and Log[k] = 4.1(2). Since one of
their primary aims was to show that the exponent m ∼ 2, we
have chosen to re-analyse their results by setting the exponent
m = 2. We find k = 4.40(03), which can be used to extract a
value of BEX of 570(45) (T), for a d of 3.66 Å. In passing,
we should note that equation (11) only holds for infinitely
pinned exchange springs. However calculations, particularly
at low temperatures, reveal that the bending field is determined
primarily by the interplay between the exchange and applied
magnetic fields. So our estimate of BEX of 570(45) (T) for
d = 3.66 Å, probably represents the best that one can do
at the present time. Note that for a Fe-moment of 1.5 μB,
μFe BEX ≈ 572 K, close to the Curie temperatures of these
compounds.

4. Patterned walls in 2D magnetic exchange springs

An example of a 2D calculation for a nominal DyFe2/YFe2

multilayer can be seen in figure 3. Note that (i) when cyclic

Figure 3. A 2D exchange spring for four strings with Nx = 4 and
Nz = (32)YFe2 + (8)DyFe2 , and cyclic boundary conditions. The
calculated bending field is BB = 1.074 T. Note that the aspect ratio
has been greatly exaggerated, in order to show the directions of the
magnetic moments more clearly. All the spins are in the x–y plane.

boundary conditions are used, the multilayer is extensive in the
z and x-axes, even though only four strings are actually shown,
and (ii) the Nz = (32)YFe2 +(8)DyFe2 is a shorthand notation for
the string of 32 monolayers of YFe2 followed by 8 monolayers
of DyFe2.

It is also of interest to see what happens if we move all
of the Dy ions into two columns, leaving the other two strings
Dy-free. This situation is illustrated in figure 4.

Two principle conclusions can be drawn from a
comparison of figures 3 and 4. (1) despite the absence of Dy
ions in the two left-hand strings in figure 4, the Fe ions behave
as if Dy ions are present. (2) the exchange spring is now
determined primarily by the shortened YFe2 chain below the
two Dy-columns. Indeed, the bending field has been increased
by some 38.75%, even though the same amount of DyFe2
has been used. The first of these observations can be easily
understood. Even though Dy ions are not present, the Y-only
strings will mirror those of the Dy-strings (in figure 4) because
of the strong Fe–Fe exchange field across the x–y direction.
The second observation follows from that of the first. Indeed
the calculated bending field of a 2D system with four Dy-
strings, all identical to those of the two right-hand columns in
figure 4, is BB = 1.926 T, cf BB = 1.461 T, for the four strings
shown in figure 4. Moreover, from a comparison of these two
bending fields, it is evident that the removal of half the pinning
layer only leads to a reduction of 24.1% in the bending field
BB. In general terms, for interface roughness on a small length
scale, the bending field is determined primarily by the shortest
YFe2 chain.

4
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y
x

z

Bapp

2.5

Figure 4. A 2D exchange spring for four strings with Nx1 = Nx2 = 2
and Nz1 = (24)YFe2 + (16)DyFe2 and Nz2 = (40)YFe2 + (0)DyFe2 , with
cyclic boundary conditions. The calculated bending field is
BB = 1.461 T. All the spins are in the x–y plane.

Figure 5. 2D bending field calculations, with cyclic boundary
conditions, as a function of Nx = (Nx1 + Nx2), for Nx1 = Nx2 and
Nz1 = (24)YFe2 + (16)DyFe2 and Nz1 = (40)YFe2 + (0)DyFe2 . The
dashed line represents an extrapolation.

Of course if we increase the number of strings, in figure 4
to Nx1 = Nx2 = 6, 8 etc, at some point the YFe2 block (Nx1)
will start to dominate, leading to a decrease in the bending field
BB. This behaviour has been modelled by increasing the period
of the patterned structure in the x-direction, Nx1 = Nx2 = 4,
6, 8, −28 as illustrated in figure 5.

It will be observed that the bending field does indeed
fall, as expected. But the fall-off is relatively slow. From
the extrapolated results, we find that the bending field falls
by ∼1/2 when Nx1 = Nx2 ∼ 30. This corresponds to a
total distance Nx of ∼200 Å. We can understand this result
as follows. For small Nx1 the bending field is determined
primarily by the shortest YFe2 string N = 24 (see figure 4).

Figure 6. An example of a 3D planar exchange spring in an
Nx = Ny = 3, Nz = (32)YFe2 + (8)DyFe2 system, with cyclic
boundary conditions. The calculated bending field is BB = 1.074 T.

But as Nx1 is increased, there will come a point when the
bending field transition will take place not underneath the
DyFe2 strings, but horizontally across the YFe2 rich areas.
Using equation (11), we can make a rough estimate for the
bending field to fall by about one-half. We find Nx1 ≈ 24

√
2 =

34, in reasonable agreement with figure 5. But, of course,
the real situation is more complicated, given the interaction
between the springs underneath the DyFe2 layers and those
in the YFe2 rich areas. In such cases, the magnetic exchange
spring will be truly 2D in nature, involving angular dispersion
in both the x and z-directions.

Finally, when Nx = 56 (the right-end of the solid line),
the calculation involves a total number of 2240 spins (4480
variables). This roughly represents the present limit of our 2D
calculations, using a Mathematica 5 program on a 3.59 GHz
computer.

5. 3D magnetic exchange springs

An example of a 3D magnetic exchange spring can be seen in
figure 6. The complete loop, showing the expected negative
coercivity, is shown in figure 7.

5
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Figure 7. Calculated magnetization loop in 3D for Nx = Ny = 3 and
Nz = (32)YFe2 + (8)DyFe2 , with cyclic boundary conditions. The
bending field transition is at 1.074 T.

The magnetization loop in 3D is very similar to that of
the 1D model of Bowden et al (2003), and Beaujour et al
(2001). Note the loop exhibits negative coercivity, in that the
magnetization goes negative at a finite positive field, as the
magnetic spring unwinds.

6. 3D magnetic exchange springs: point defects

Unlike the 1D model, both 2D and 3D calculations can be used
to probe the effects of vacancies on magnetic exchange springs.
An example can be seen in figure 8. Here an iron vacancy has
been placed in the middle of one of the YFe2 springs. The
bending field in this case is BB = 1.080 T, an increase of some
0.6% on the defect-free system. However, if the vacancy is
placed at the top of one of the YFe2 chains, the bending field
is decreased by 1.3%. We can understand these two results,
qualitatively, as follows. If an iron moment is removed from
the centre of the chain, the Zeeman interaction which drives
the exchange spring is reduced. This leads to an increase in BB

because a larger applied field is required to drive the transition.
However, when the vacancy is placed at the top of the YFe2

chain, the pinning of the spring is reduced at that point, leading
to a decrease in BB. More results for 1–3 vacancies can be seen
in table 1. Note that in the main the effect of Fe vacancies is
small, a few per cent. Given that each Fe ion is surrounded
by six neighbours, it is evident that the loss of ∼1/6 exchange
field at one or more sites, does not unduly affect the majority
of the Fe spins.

In table 1, we have also listed the effects due to inserting
Dy ions into the middle of the YFe2 strings. Here the changes
in the bending field are much more significant than those
caused by Fe vacancies. For example if a monolayer of
9 DyFe2 moments is taken from the bottom of the DyFe2
strings (layer z = 33) and placed in the middle of the YFe2

string (layer z = 17), the change in the bending field amounts
to +57.6%. Note that this increase has been achieved without
changing the overall number of DyFe2 and YFe2 layers. This
substantial increase can be understood as follows. The Dy
ions stiffen the YFe2 exchange springs in two ways: (i) via
the Dy-anisotropy, which favours the x-axis, and (ii) via the
Dy–Zeeman interaction, which acts against the formation of
the magnetic exchange spring. The way is open therefore,

Figure 8. An Fe vacancy at r(1,3,16) i.e. half-way up the YFe2

spring. The calculated bending field is BB = 1.080 T, an increase of
+0.400% over the defect-free system.

Table 1. Changes in the bending field BB brought about by various
point defects, in a 3D planar exchange spring, for a nominal
NYFe2/NDyFe2 = 32/8 and Kanis = −10. The vacancies 1–3 are along
a cube edge in the x-direction.

Defect-type No.
Bending
field (T) �BB/BB (%)

None 0 1.073 939 0
Mid-spring
Fe vacancy 1 1.080 163 0.622
Mid-spring
Fe vacancy 2 1.086 441 1.250
Mid-spring
Fe vacancy 3 1.092 768 1.883
Top-spring
Fe vacancy 1 1.060 9355 −1.300
Top-spring
Fe vacancy 2 1.044 0353 −2.990
Top-spring
Fe vacancy 3 1.021 344 −5.259
Mid-spring
Dy ion 1 1.142 9098 6.897
Mid-spring
Dy ion 2 1.211 1585 13.722
Mid-spring
Dy ion 3 1.2783̇89 20.445
Mid-spring
Dy ion 9 1.649 718 57.578
Mid-spring
Dy ion 18 2.098 697 102.476

to modify the properties of magnetic exchange springs, by
inserting differing RE ions into the middle of the YFe2 strings.

6
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Figure 9. Calculated magnetization loop in 3D for a nominal
NYFe2 /NDyFe2 = 8/32, with Nx = Ny = 3 and
Nz = (16)YFe2 + (1)DyFe2 + (16)YFe2 + (7)DyFe2 i.e. one plane of
DyFe2 atoms removed from the bottom of the DyFe2 strings and
placed into the middle of the YFe2 strings (z = 17). Note that the
‘bending field’ BB is now discontinuous (dotted lines).

Figure 10. A partial loop. The ‘bending field’ BB is discontinuous
(dotted lines) and hysteretic: 1.650 T on the way up and 1.595 T on
the way down.

Finally, in figure 9 we show the calculated magnetic loop
for one DyFe2 layer placed into the middle of the YFe2 strings.
From a comparison of figures 7 and 9, it will be seen that the
bending field BB is increased, while the saturation moment
is slightly reduced. But more importantly, the ‘bending field
transition’ is now discontinuous and hysteretic. This is due
primarily to the anisotropy of the mid-spring Dy ions. As the
exchange spring unwinds, the mid-spring DyFe2 layer is forced
by the YFe2-spring to point along a hard axis. As a result, the
Dy ions act so as to pin the magnetic exchange spring. But, as
the magnetic field is reduced below a critical value, the Dy ions
over-reach the hard 90◦ direction, leading to a sudden magnetic
collapse of the spring to the AF-state. This is illustrated more
clearly in figure 10, which shows a partial loop around the
‘bending field transition’.

7. Conclusions

In this paper, 1D models of magnetic exchange springs have
been extended to 2D and 3D. In practice, the 2D and 3D models
represent an improvement on the 1D model, because they allow
effects due either to defects and/or deliberate doping to be
investigated.

2D calculations have been presented, which show that
the properties of domain walls can be significantly altered
by modifying the structural configuration of the hard/soft
interface. Such calculations have relevance in the study of
both interface roughness and patterned materials. In general,
for relatively small interface roughness in the lateral (x)
dimension, the bending field is determined primarily by the
smallest of the YFe2 strings.

3D calculations have also revealed novel exchange spring
behaviour. In particular, we have probed the effect of
defects on the properties of magnetic exchange springs, in the
DyFe2/YFe2 system. It was found that point defects such as
Fe vacancies have little effect on the bending field transition,
in marked contrast to the 1D model. However, when RE ions
are placed in the centre of the soft YFe2 springs, significant
changes can be brought about in the properties of magnetic
exchange springs.

Finally, a new phenomenon has been postulated:
magnetic-exchange spring collapse. In the past, exchange
springs have been considered reversible. However, when
selected RE ions are placed into the middle of a soft exchange
spring, the bending field transition can become discontinuous
and irreversible.

Acknowledgment

The authors gratefully acknowledge support from the
Engineering and Physical Sciences Research Council.

References

Amato M, Pini M G and Rettori A 1999 Phys. Rev. B 60 3414
Amato M, Rettori A and Pini M G 2000 Physica B 275 120–3
Armitage J G M, Dumelow T, Riedi P C and Abell J S 1989 J. Phys.:

Condens. Matter 1 3987–94
Beaujour J-M L, Bowden G J, Gordeev S, de Groot P A J,

Rainford B D, Ward R C C and Wells M R 2001 Appl. Phys.
Lett. 78 964

Bowden G J, Beaujour J-M L, Goordeev S, de Groot P A J,
Rainford B D and Sawicki M 2000 J. Phys.: Condens. Matter
12 9335–46

Bowden G J, Beaujour J-M L, Zhukov A A, Rainford B D,
de Groot P A J, Ward R C C and Wells M R 2003 J. Appl. Phys.
93 6480

Buschow K H J 1977 Rep. Prog. Phys. 40 1179–256
Coey J M D and Skomski R 1993 Phys. Scr. T 49 315
Dumesnil K, Dutheil M, Dufour C and Mangin Ph 2000 Phys. Rev. B

62 1136
Fitzsimmons M R, Park S, Dumesnil K, Dufour C, Pynn R,

Borchers J A, Rhyne J J and Mangin Ph 2006 Phys. Rev. B
73 134413

Fullerton E E, Jiang J S and Bader S D 1999 J. Magn. Magn. Mater.
200 392

Fullerton E E, Jiang J S, Grimsditch M, Sowers C H and
Bader S D 1998 Phys. Rev. B 58 12193

Gordeev S, Beaujour J-M L, Bowden G J, de Groot P A J,
Rainford B D, Ward R C C, Wells M R and Jansen A G M 2001
Phys. Rev. Lett. 87 186808

Goto E, Hayashi N, Miyashita T and Nakagawa K 1965 J. Appl.
Phys. 36 2951–8

Jiang J S, Pearson J E, Liu Z Y, Kabius B, Trasobares S, Miller D J,
Bader S D, Lee D R, Haskel D, Srajer G and Liu J P 2004 Appl.
Phys. Lett. 85 5293

Kneller E F 1991 IEEE Trans. Magn. 70 3588

7

http://dx.doi.org/10.1103/PhysRevB.60.3414
http://dx.doi.org/10.1016/S0921-4526(99)00726-7
http://dx.doi.org/10.1088/0953-8984/1/25/010
http://dx.doi.org/10.1063/1.1344594
http://dx.doi.org/10.1088/0953-8984/12/44/314
http://dx.doi.org/10.1063/1.1539072
http://dx.doi.org/10.1088/0034-4885/40/10/002
http://dx.doi.org/10.1088/0031-8949/1993/T49A/055
http://dx.doi.org/10.1103/PhysRevB.62.1136
http://dx.doi.org/10.1103/PhysRevB.73.134413
http://dx.doi.org/10.1016/S0304-8853(99)00376-5
http://dx.doi.org/10.1103/PhysRevB.58.12193
http://dx.doi.org/10.1103/PhysRevLett.87.186808
http://dx.doi.org/10.1063/1.1714613
http://dx.doi.org/10.1063/1.1828225
http://dx.doi.org/10.1109/20.102931


J. Phys.: Condens. Matter 20 (2008) 015209 G J Bowden et al

Sawicki M, Bowden G J, de Groot P A J, Rainford B R,
Beaujour J-M L, Ward R C C and Wells M R 2000 Phys. Rev. B
62 5817–20

Trallori L, Pini M G, Retorri A, Maccio M and Politi P 1996 Int. J.
Mod. Phys. B 10 1935

Trallori L, Politi P, Retorri A, Pini M G and Villain J 1994 Phys. Rev.
Lett. 72 1925

Ulrich J, Maat S, Lee R J and Fullerton E E 2004 IEEE Trans. Magn.
40 2537

Zimmermann J P, Bordignon G, Boardman R P, Fischbacker T,
Fangohr H, Marin K N, Bowden G J, Zhukov A and
de Groot P A J 2006 J. Appl. Phys.
99 08B904

8

http://dx.doi.org/10.1103/PhysRevB.62.5817
http://dx.doi.org/10.1142/S021797929600088X
http://dx.doi.org/10.1103/PhysRevLett.72.1925
http://dx.doi.org/10.1109/TMAG.2004.829325
http://dx.doi.org/10.1063/1.2172560

	1. Introduction
	2. 1D, 2D and 3D models of a magnetic exchange spring
	3. Estimates of the Fe--Fe exchange field B_{EX}
	4. Patterned walls in 2D magnetic exchange springs
	5. 3D magnetic exchange springs
	6. 3D magnetic exchange springs: point defects
	7. Conclusions
	Acknowledgment
	References

